New materials for a classic indication

Case studies of all-ceramic restorations using Variolink Esthetic

By Dr Eduardo Mahn and Dr Juan Pablo Sánchez, Chile

Metal-based single crowns are normally sealed using a zinc phosphate cement. Bond or cement materials have led to a change in the luting material being used for this indication. Zinc phosphate cements are seen as classic luting materials for the cementation of metal-ceramic crowns. Along with all-ceramic materials, glass-ionomer cements (GIC) and resin-modified glass-ionomer cements (RMGIC) were introduced. Generally, luting cements are expected to meet certain requirements. They should provide an optimum bond to the tooth structure and restoration material. They must not be soluble in water. They should be suitable for application in thin coatings and they should offer long-term stability. This is in contrast to the properties of classic cements, which are water soluble and do not establish an adhesive bond to the enamel or dentin (zinc phosphate cements) or establish only a minimally adhesive bond and only to the dentin (GICs and RMGICs). Nonetheless, these cements show reasonable survival rates if used for the appropriate indication even if they involve certain limitations.

Problem I: opacity

The opacity of the luting material is a critical issue in all-ceramic crowns as well as ceramic inlays and onlays. Almost any colour can theoretically be reproduced with ceramics by exploiting their natural translucent properties. Using an opaque luting material appears to be counterproductive in achieving this. Further critical issues are the limitations involved in the anterior region and the location of the cement line in the visible area in inlays and onlays. For instance, if a tooth is restored with a veneer, the basic shade of the tooth is maintained. Only the enamel is replaced, usually by using a translucent ceramic that covers the natural dentin. In such a case, it is essential to use a translucent luting material to achieve a favourable result.

Problem II: adhesion

The comparatively low bond strength of conventional cements is also problematic. Classic preparations around the tooth create a high degree of friction and retention. However, the retention is significantly reduced in partial crowns, veneers or onlays. It is therefore advisable to use a luting material that is capable of providing a strong adhesive bond. Both problems led to the widespread use of composite luting materials. Perhaps their only disadvantage is the removal of excess material. These luting materials are not water soluble, hard and solid and they have a high adhesive strength, which makes excess removal difficult. Early luting composites were equipped with a self-cure mechanism. Users had to wait a few minutes until the composite was almost fully set before they could remove the excess material. This period of time was risky because of the moisture in the mouth. Blood or saliva could come into contact with the non-polymerized composite and cause damage.

Dual-curing luting composites

These issues led to the rise of dual-curing composites for the cementation of all-ceramic crowns. Dual-curing luting composites are usually delivered in double-push syringes with a mixing tip. During extrusion, the base and catalyst are automatically mixed. The material can be applied directly. The main advantage is that the curing process can be accelerated with light and excess material can be easily removed. At the same time, the self-cure mechanism ensures a reliable cure, even with relatively thick or opaque ceramic layers. Nonetheless, there are some situations in which excess material cannot be removed all that easily because the setting reaction takes place too quickly or the material does not cure down to the depth of the composite layer. After one second of light curing, the surface is set and excess can be broken off, but the material is still paste-like at the interface to the crown or tooth. State-of-the-art luting composites such as Variolink Esthetic contain the newly developed initiator Ivo- cerin. This photoinitiator needs fewer photons to initiate the setting reaction. Excess can be polymerized en bloc and pulled off as a “ring” in one go with no uncurled material left in touch with the tooth or crown (see Fig. 9). In addition, the luting composite does not contain amine, which is another advantage. Amine may be implicated in a potential discoloration of the cement line over time.

One material – five shades

Variolink Esthetic is based on the Value Shade concept. The shades are classified according to the effect to be achieved with the cement. Five shades are available: Lights, Light, Neutral, Warm and Warm+. In this way, the shade spectrum ranges from an opaque white tone (light+) to an opaque yellow brownish shade (Warm+). In between lie shades such as a coconut water white and a neutral tone (very translucent) and a warm tone (comparable to A3). In addition, the luting composite is designed for relatively thin restorations such as inlays, onlays and veneers. It is available in modified glass-ionomer cements (RMGIC) were introduced. Generally, luting cements are expected to meet certain requirements. They should provide an optimum bond to the tooth structure and restoration material. They must not be soluble in water. They should be suitable for application in thin coatings and they should offer long-term stability. This is in contrast to the properties of classic cements, which are water soluble and do not establish an adhesive bond to the enamel or dentin (zinc phosphate cements) or establish only a minimally adhesive bond and only to the dentin (GICs and RMGICs). Nonetheless, these cements show reasonable survival rates if used for the appropriate indication even if they involve certain limitations.

Problem I: opacity

The opacity of the luting material is a critical issue in all-ceramic crowns as well as ceramic inlays and onlays. Almost any colour can theoretically be reproduced with ceramics by exploiting their natural translucent properties. Using an opaque luting material appears to be counterproductive in achieving this. Further critical issues are the limitations involved in the anterior region and the location of the cement line in the visible area in inlays and onlays. For instance, if a tooth is restored with a veneer, the basic shade of the tooth is maintained. Only the enamel is replaced, usually by using a translucent ceramic that covers the natural dentin. In such a case, it is essential to use a translucent luting material to achieve a favourable result.

Problem II: adhesion

The comparatively low bond strength of conventional cements is also problematic. Classic preparations around the tooth create a high degree of friction and retention. However, the retention is significantly reduced in partial crowns, veneers or onlays. It is therefore advisable to use a luting material that is capable of providing a strong adhesive bond. Both problems led to the widespread use of composite luting materials. Perhaps their only disadvantage is the removal of excess material. These luting materials are not water soluble, hard and solid and they have a high adhesive strength, which makes excess removal difficult. Early luting composites were equipped with a self-cure mechanism. Users had to wait a few minutes until the composite was almost fully set before they could remove the excess material. This period of time was risky because of the moisture in the mouth. Blood or saliva could come into contact with the non-polymerized composite and cause damage.

Dual-curing luting composites

These issues led to the rise of dual-curing composites for the cementation of all-ceramic crowns. Dual-curing luting composites are usually delivered in double-push syringes with a mixing tip. During extrusion, the base and catalyst are automatically mixed. The material can be applied directly. The main advantage is that the curing process can be accelerated with light and excess material can be easily removed. At the same time, the self-cure mechanism ensures a reliable cure, even with relatively thick or opaque ceramic layers. Nonetheless, there are some situations in which excess material cannot be removed all that easily because the setting reaction takes place too quickly or the material does not cure down to the depth of the composite layer. After one second of light curing, the surface is set and excess can be broken off, but the material is still paste-like at the interface to the crown or tooth. State-of-the-art luting composites such as Variolink Esthetic contain the newly developed initiator Ivo-cerin. This photoinitiator needs fewer photons to initiate the setting reaction. Excess can be polymerized en bloc and pulled off as a “ring” in one go with no uncurled material left in touch with the tooth or crown (see Fig. 9). In addition, the luting composite does not contain amine, which is another advantage. Amine may be implicated in a potential discoloration of the cement line over time.

One material – five shades

Variolink Esthetic is based on the Value Shade concept. The shades are classified according to the effect to be achieved with the cement. Five shades are available: Lights, Light, Neutral, Warm and Warm+. In this way, the shade spectrum ranges from an opaque white tone (light+) to an opaque yellow brownish shade (Warm+). In between lie shades such as a coconut water white and a neutral tone (very translucent) and a warm tone (comparable to A3). In addition, the luting composite is designed for relatively thin restorations such as inlays, onlays and veneers. The next step was to etch and silanate the ceramic crown with the new glass-ceramic primer Monobond® Esthetic. This primer combines a ceramic etching and silanating component in one single material and therefore eliminates the need for the ceramic to undergo hydrofluoric acid etching (Fig. 7). After the crystallization firing the crown was stained and glazed (Fig. 4).
IPS e.max® ZirCAD
The perfect combination of strength, esthetics and translucency

- Polychromatic MT Multi discs for efficiency and highly esthetic restorations
- High flexural strength and fracture toughness for a broad indication range
- Low wall thicknesses for less invasive preparations
- Three translucency levels (MO, LT, MT) for natural esthetics
VladMiVa—success comes with persistence

By VladMiVa

VladMiVa, a large Russian holding company that unites a number of Belgorod-based companies and is invested in the development and manufacturing of materials, tools and equipment for dentistry, cele-


VladMiVa’s activities and products have not only been recognized na-

tionally and by the Commonwealth of Independent States (CIS) coun-

tries, but also in the global dental market, the company is known as

the largest manufacturer of dental materials and instruments in Russia.

On the night of the anniversary, we interviewed the founder and gen-

eral manager of VladMiVa, Vladimir Chuev, who is also a doctor of techni-

cal sciences and a professor and the head of the Department of Medical and

Technical Systems at Belgorod State University (BGSU).

Prof. Chuev, tell us the story of how your enterprise began?

Prof. Chuev: The critical moment when people are “on the edge” is often a decisive moment. Someone drops his hands and someone starts

to act despite of their fears, difficul-

ties and an uncertain future. In 1993,

the state funding for the laboratory

that I directed was stopped, but our

developments were of an applied

nature, so we could try to find use for

them. I decided to create a commer-
cial enterprise, invested my own sav-
ings in it and convinced almost all

my colleagues to stay and work with

me. Our first development was very

successful. In the same year, 1993,

we received a silver medal from the

USB Exhibition of Achievements of the National Economy for the tech-
nology we developed to manufac-

ture amalgam fillings. The next im-

portant step was the development of a technology for the production of
dental cements for the Voronezh-

based enterprise, Raduga-R. Our first

success inspired our small team.

VladMiVa consists of a group

of companies. What kind of

companies are they and

which idea unitess them?

We very quickly realized that focus-
ing only on technological develop-

ment is not very promising business.

Therefore, in 1994, the commercial
department began its work. We start-
ed with direct sales on 2m² of exhibi-
tion space—that seems ridiculous
today—but we managed to find our

customers and see a clear picture of

real consumer demand. In 1998, IVC

VladMiVa—EXPERIMENTAL

PLANT was opened.

The idea of “Development—Produc-
tion—Realization”, upon which we

laid the foundation of the company’s

activities, was soon realised. Between

2001 and 2002, we mastered the

production of dental equipment and

diamond burs and by 2009 we

had produced more than two hun-
dred kinds of products. In 2004, we

opened our own dental centre, which

was not only a place to confirm the

high quality of our materials, but also

a prime example of a world-class
dental centre. The holding company
today also includes Trade House,

our own transport company with

branches across Russia.

Over the past 25 years, the num-

ber of employees has grown from

four to four hundred; we produce

more than three hundred kinds of

products and our consumers are

not only in Russia, but also in more

than 50 countries around the world.

The main activities of the company

today include the development and

manufacturing of medical products

for dentistry, providing raw materi-

als for their development, pharma-

ceutical production, the production

of modern disinfectants for medical

institutions, developing veterinary

medicine and consumer services.

Do you participate in

programs with state support?

What is the role of science and

education in your work?

The first aid that we received from

the state was a small grant from the

Foundation for Assistance to Small

Innovative Enterprises in Science and

Technology. Since 1997, we have

participated in many programs of the

foundation and are very grateful to

its leadership for their assistance.

Participation, together with the BRU,

in the federal project on govern-

ment’s resolution of the RF No. 218

became an interesting experience

and has led to the emergence of the

first Russian certified nanocompo-

site, DentLight as well as the creation

of two small innovative enterprises,

MANOPATIT and Keranos-BSU.

We also actively cooperate with lead-
ing scientific centres, such as the

Federal State Institution Central Re-

search Institute of Dental and Maxil-

lofacial Surgery, Dmitry Mendeleev

University of Chemical Technology

of Russia, Moscow State University

of Medicine and Dentistry, Samara

State University, IM. Sechenov First

Moscow State Medical University

and Tula State Medical Academy. By

2010, the employees of VladMiVa

have among them received four PhD

degrees as well as a doctoral thesis.

Furthermore, at the Department of

Medical and Technical Systems at

BRU, the nominal audience of Vlad-

MiVa was opened and five schol-

arships were awarded to the best

students. Our dental centre is also a

clinical base for these students. We

want to realise one more idea, which

is to further educate our young em-

ployees.

What about your employees

today? How do you solve their

social problems?

Today, our companies employ a total
of 400 people of different professions. Of course, like any other company, we experience a shortage of skilled employees, such as technologists, but this does not diminish the quality of our work. We value each of our employees. Even in the most difficult times of crisis, we do not delay the payment of wages. We also never refuse payments on sick leave or on paid leave. We have developed a corporate program of material assistance to employees who are in difficult socio-economic situations. All our employees also receive dental care on preferential terms. We have also built a new plant with a work environment that meets all the modern requirements of labour protection.

For 25 years, we have formed corporate traditions, such as joint holidays and excursions where the families of our employees participate and we can enjoy children's performances and competitions. We try to create a comfortable environment for all our people. We have built a chapel, planted flowers and always aim to provide good production and living conditions. We respect our veterans. We also love our city Belgorod and participate in its development.

VladMIVA products have a high quality. Can they keep up with, or even replace, the imported goods?

In 2011, our production received a Certificate of Compliance with the requirements of International Standards (ISO 13485:2003). Later, we obtained the right to label our products with the mark of European conformity (CE), which means compliance with EU standards. In 2014, JSC «VLADMIVA» became one of the first 25 enterprises that have the right to label their products as “Russian nanotechnological products”, which is a confirmation of the high quality of our products.

Out of our three hundred products, more than 90% are in demand on the foreign market. In Russia, we have to overcome the phenomenon of “Westernism” in dentistry and persuade consumers through systematic participation in exhibitions, conferences and seminars that “Made in Russia” means quality.

We are always pleased to offer to Russian dentists a large selection of dental materials, including prophylactic, restorative or treating materials, as well as materials for paediatric dentistry, biomaterials for the regeneration of bone tissue and various tools, of excellent quality, at a reasonable price.